1) Find the total differential.
a) $z=2 x^{2} y^{3}$
b) $z=x \cos y-y \cos x$
c) $w=2 z^{3} y \sin x$
a) $d z=4 x y^{3} d x+6 x^{2} y^{2} d y$
b) $d z=(\cos y+y \sin x) d x-(x \sin y+\cos x) d y$
c) $d w=2 z^{3} y \cos x d x+2 z^{3} y \sin x d y+6 z^{2} y \sin x d z$
2) If $z=5 x^{2}+y^{2}$ and (x, y) changes from $(1,2)$ to $(1.05,2.1)$, find the values of Δz and $d z$.

$$
\Delta z=0.9225, d z=0.9
$$

3) The radius r and height h of a right circular cylinder are measured with possible errors of 4% and 2%, respectively. Approximate the maximum possible percent error in measuring the volume.

10%

4) A triangle is measured and two adjacent sides are found to be 3 inches and 4 inches long, with an included angle of $\frac{\pi}{4}$. The possible errors in measurement are 0.0625 inches for the sides and 0.02 radian for the angle. Approximate the maximum possible error in the computation of the area.

$$
\approx \pm 0.24 \mathrm{in}^{2}
$$

5) Show that the function $f(x, y)=x^{2}-2 x+y$ is differentiable by finding values ε_{1} and ε_{2} as designated in the definition of differentiability, and verify that both ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

$$
\Delta z=(2 x-2) \Delta x+\Delta y+\Delta x(\Delta x)+0 \Delta y, \varepsilon_{1}=\Delta x, \varepsilon_{2}=0
$$

6) Use the function below to show that $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist, but that f is not differentiable at $(0,0)$.

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{3 x^{2} y}{x^{4}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

$f_{x}(0,0)=0, f_{y}(0,0)=0$, So the partial derivatives exist at $(0,0)$.
Along $y=x \quad \lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$
Along $y=x^{2} \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\frac{3}{2}$
f is not continuous at $(0,0)$, so it is not differentiable at $(0,0)$
7) Find an equation of the tangent plane to the given surface at the specified point.
a) $z=4 x^{2}-y^{2}+2 y ;(-1,2,4)$
b) $z=e^{x^{2}-y^{2}} ;(1,-1,1)$
a) $z=-8 x-2 y$
b) $z=2 x+2 y+1$
8) Show that that function is differentiable at the given point. Then find the lineararization $L(x, y)$ of the function at that point.
a) $f(x, y)=x \sqrt{y} ;(1,4)$
b) $f(x, y)=\sin (2 x+3 y) ;(-3,2)$
a) $\begin{aligned} & f_{x} \text { and } f_{y} \text { are continuous functions for } y>0, f \text { is differentiable at }(1,4) . \\ & L(x, y)=2 x+\frac{1}{4} y-1\end{aligned}$
b)
f_{x} and f_{y} are continuous functions, f is differentiable at $(-3,2)$.
$L(x, y)=2 x+3 y$ $L(x, y)=2 x+3 y$
9) Find the linear approximation of the function $f(x, y)=\ln (x-3 y)$ at $(7,2)$ and use it to approximate $f(6.9,2.06)$.

$$
f(6.9,2.06) \approx-0.28
$$

10) Find the linear approximation of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(3,2,6)$ and use it to approximate $f(3.02,1.97,5.99)$.

$$
f(3.02,1.97,5.99) \approx 6.9914
$$

